Localized MFS for three‐dimensional acoustic inverse problems on complicated domains
نویسندگان
چکیده
Abstract This paper proposes a semi‐analytical and local meshless collocation method, the localized method of fundamental solutions (LMFS), to address three‐dimensional (3D) acoustic inverse problems in complex domains. The proposed approach is recently developed numerical scheme with potential being mathematically simple, numerically accurate, requiring less computational time storage. In LMFS, an overdetermined sparse linear system constructed by using known data at nodes on accessible boundary making remaining satisfy governing equation. procedure, pseudoinverse matrix solved via truncated singular value decomposition, thus regularization techniques are not needed solving resulting well‐conditioned matrix. Numerical experiments, involving complicated geometry high noise level, confirm effectiveness performance LMFS for 3D problems.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Marching schemes for inverse acoustic scattering problems
Since supp f ⊂ Ω, uθ satisfies the plain Helmholtz equation with constant wavenumber outside of Ω, the radiation condition and uθ|∂Ω = gθ. So by solving the exterior problem of the Helmholtz equation (analytically if Ω is a circle), uθ can be computed everywhere outside of Ω without prior knowledge of f . In particular, we can compute h = ∂uθ ∂ν on ∂Ω. Thus, our original problem can be rewritte...
متن کاملInverse Problems in Acoustic Tomography :
v Résumé vii Acknowledgments ix Frequently Used Terms, Abbreviations, and Notations xi
متن کاملInverse positivity for general Robin problems on Lipschitz domains
It is proved that elliptic boundary value problems in divergence form can be written in many equivalent forms. This is used to prove regularity properties and maximum principles for problems with Robin boundary conditions with negative or indefinite boundary coefficient on Lipschitz domains by rewriting them as a problem with positive coefficient. It is also shown that such methods cannot be ap...
متن کاملEfficient Numerical Solution of Neumann Problems on Complicated Domains
In this paper, we will consider elliptic PDEs with Neumann boundary conditions on complicated domains. The discretization is performed by composite finite elements. The a-priori error analysis typically is based on the precise knowledge of the regularity of the solution. However, the constants in the regularity estimates, possibly, depend critically on the geometric details of the domain and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International journal of mechanical system dynamics
سال: 2022
ISSN: ['2767-1399', '2767-1402']
DOI: https://doi.org/10.1002/msd2.12031